Abstract
Maximizing the motor practice in stroke survivors' living environments may significantly improve the functional recovery of their stroke-affected upper-limb. A wearable system that can continuously monitor upper-limb performance has been considered as an effective clinical solution for its potential to provide patient-centered, data-driven feedback to improve the motor dosage. Towards that end, we investigate a system leveraging a pair of finger-worn, ring-type accelerometers capable of monitoring both gross-arm and fine-hand movements that are clinically relevant to the performance of daily activities. In this work, we conduct a mixed-methods study to (1) quantitatively evaluate the efficacy of finger-worn accelerometers in measuring clinically relevant information regarding stroke survivors' upper-limb performance, and (2) qualitatively investigate design requirements for the self-monitoring system, based on data collected from 25 stroke survivors and seven occupational therapists. Our quantitative findings demonstrate strong face and convergent validity of the finger-worn accelerometers, and its responsiveness to changes in motor behavior. Our qualitative findings provide a detailed account of the current rehabilitation process while highlighting several challenges that therapists and stroke survivors face. This study offers promising directions for the design of a self-monitoring system that can encourage the affected limb use during stroke survivors' daily living.